Example (Ref. Fay)

Application of Bernoulli:

Falling fluid jet

Applying Bernoulli's between

\[\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + \phi_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + \phi_2 \quad (a) \]

\[P_1 \text{ and } P_2 \text{ are equal to the} \]

surrounding atmosphere:

From statics:

\[P_2 - P_1 = \rho [\phi_2 - \phi_1] \quad (b) \]

From (c):

\[P_2 - P_1 = \ldots \]

\[V_2^2 = V_1^2 + 2g(\phi_2 - \phi_1) \]

\[\frac{\rho_1}{\rho_w} = 10^{-3} \ll 1 \]

\[V_2^2 = V_1^2 + 2g(\phi_2 - \phi_1) \]

Also

\[\rho V_2 \frac{\pi}{4} d_2^2 = \rho V_1 \frac{\pi}{4} d_1^2 \]

\[d_2 = \sqrt{\frac{\rho V_1^2}{V_1^2 + 2g(\phi_2 - \phi_1)}} \]

\[d_2 \text{ decreases} \]
3. A 0.3 m by 0.5 m rectangular air duct carries a flow of 0.45 m³/s at a density of 2 kg/m³. Calculate the mean velocity in the duct. If the duct tapers to 0.15 m by 0.5 m size, what is the mean velocity in this section if the density is 1.5 kg/m³ there?

(Ans. 8 m/s)

4. Find \(\dot{V} \) for this mushroom cap on a pipeline.

(Ans. 1.8 m/s)

5. (From Gerhart et al.)

(a). Air enters the axial compressor shown in Fig. P4.15 at 101 kPa absolute, 27°C, and an average axial velocity component of 1.5 m/s. Find the air mass flow rate through the compressor.

(b). The absolute pressure and temperature at point 2 of the axial compressor in Fig. P4.15 are 202 kPa and 87°C. The air mass flow rate is 5.33 kg/s. Calculate the average axial velocity at point 2.

(Ans. 5.53 kg/s, 1.20 m/s)

6. Show that the flow field described by the velocity components

\[u = \frac{-2xye}{(x^2 + y^2)^3}, \quad v = \frac{(x^2 - y^2)e}{(x^2 + y^2)^3}, \]

and

\[w = \frac{y}{x^2 + y^2} \]

is a possible incompressible fluid flow.
(3)

\[V = \frac{Q}{A} = \frac{0.45}{0.3 \times 0.5} = 3 \text{ m/s} \]

Mass flow rate \(m = (\dot{m}) = PQ \)

Mass conservation gives:

\[(PQ)_1 = (PQ)_2 \quad \text{or} \quad (PVA)_1 = (PVA)_2 \]

\[V_2 = \frac{(PQ)_1}{(P/A)_2} = \frac{2.0 \times 0.45}{1.5 \times 0.15 \times 0.5} = 4 \text{ m/s} \]
Conservation of mass requires:

\[Q_{in} = Q_{out} \]

or

\[3 \text{ m}^3/\text{s} = V \cdot A \]

\[= V \cdot \cos 45^\circ \cdot \left(\frac{\pi \cdot 2^2}{\pi \cdot 1.8^2} \right) \]

\[V = 1.78 \text{ m/s} \]
PROBLEM 4.15

GIVEN: Ideal gas at 101 kPa absolute and 27°C and average axial velocity component of 1.5 m/s in 2.0 m circular inlet. Figure P4.15.

FIND: Air mass flow rate.

Solution: Using the ideal gas law and Table A.3, the density is

\[\rho = \frac{P}{RT} = \frac{101 \text{ kPa}}{(2.77 \text{ kPa/kg-K})(273+27) \text{ K}} = 1.17 \text{ kg/m}^3 \]

The mass flow rate is

\[\dot{m} = \rho A \dot{V} = \rho (\pi d^2/4) \dot{V} \]

\[\dot{m} = \rho (\pi (1.5 \text{ m})^2) \cdot 5 \text{ m/s} = 5.53 \text{ kg/s} \]

(DNW)
PROBLEM 4.16

GIVEN: Fig. P4.15 with absolute pressure 202 kPa and temperature 87°C at point 2. Air mass flow rate is 5.53 kg/s.

Find Average axial velocity at section 2.

Solution: Assuming air is an ideal gas, the ideal gas law and Table A.3 gives:

\[P = \frac{RT}{\gamma} \left(\frac{287.0 \text{ N} \cdot \text{m}^2 / \text{kg} \cdot \text{K}}{273 + 87} \right) \]

The average axial velocity is

\[\bar{V} = \frac{\dot{m}}{FA} = \frac{4\Delta \rho}{\pi F (d_0^2 - d_1^2)} \]

\[\bar{V} = 1.20 \text{ m/s} \]
(6) For a possible incompressible fluid flow, one needs

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \]

Now, for this problem:

\[\frac{\partial u}{\partial x} = \frac{(x^2 + y^2)^2(-2y) + 2xyz(2)(2x)(x^2 + y^2)}{(x^2 + y^2)^4} \]

\[\frac{\partial v}{\partial y} = \frac{(x^2 + y^2)^2[-2yz] - (x^2 - y^2)z(2)(2y)(x^2 + y^2)}{(x^2 + y^2)^4} \]

\[\frac{\partial w}{\partial z} = 0. \]

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \frac{-2yz(x^2 + y^2) + 2x^2yz(x^2 + y^2) - 2yz(x^2 + y^2)}{(x^2 + y^2)^4} \]

\[= 0 \]

\[\therefore \text{Flow is possible.} \]
A long solid circular cylinder of radius R spins steadily about its own axis in a stream of fluid of density \(\rho \), as shown. Far upstream of the cylinder, the fluid has a uniform velocity \(U \) in the positive \(x \) direction, and pressure \(p_0 \). Assume that the flow conditions are such that the fluid velocity on the cylinder surface is given by

\[
V_s = -(2U \sin \theta + K)
\]

where \(K \) is a positive constant relating to rotational speed of the cylinder.

(a) Determine the pressure at points A, B, and C on the cylinder surface in terms of \(p_0 \), \(U \), \(\rho \), \(\theta \), and \(K \). Assume ideal flow and ignore the effects of gravity.

(b) Show that the total force in the \(y \) direction (the lift force) on the cylinder (per unit length) is

\[
L = \rho U (2\pi R K)
\]

Notes: If \(I = \int_0^{2\pi} (\sin^n \theta) \, d\theta \),

then \(I = 0 \) when \(n \) is odd, and \(I = \pi \) when \(n = 2 \).
\[\rho A^2 \theta = \frac{\pi}{2} : \quad V_S = -(2U + K) \]

Bernoulli \(O \rightarrow A \):

\[\frac{\rho}{\gamma} + \frac{U^2}{2} = \frac{P_A}{\gamma} + \frac{V_A^2}{2} \quad \Rightarrow \quad \frac{P_A}{\gamma} + \frac{(2U + K)^2}{2} \]

\[\rho_A = \left[\frac{\rho}{\gamma} + \frac{U^2}{2} - \frac{(2U + K)^2}{2} \right] \gamma \]

\[\rho A^2 \theta = -\frac{\pi}{2} : \quad V_S = -(K - 2U) \]

\[\rho_B = \left[\frac{\rho}{\gamma} + \frac{U^2}{2} - \frac{(K - 2U)^2}{2} \right] \gamma \Rightarrow \rho_B > \rho_A \]

\[\rho A C : \quad V_1 = -(2U \sin \theta + K) \]

\[\rho_C = \left[\frac{\rho}{\gamma} + \frac{U^2}{2} - \frac{(2U \sin \theta + K)^2}{2} \right] \gamma \]

\[\text{Force on cylinder (fr. net. flow)}: \]

\[\text{Net Force} = \int (P_B \cdot R) \cdot \sin \theta \quad \theta = 0 \]
\[
\text{Force} = \int_0^{\pi R} \left(R \cdot \sin^2 \left[\left(\frac{\rho_0}{l} + \frac{U^2}{l^2} \right) \right] + \frac{(2 \pi \sin \theta + \kappa)^2}{\gamma} \right) \, d\theta
\]
\[
= R \left[\int_0^{\pi R} \left(\frac{\rho_0}{l} + \frac{U^2}{l^2} \right) \sin \theta \, d\theta - \frac{\sin \theta}{\gamma} \left(2 \pi \sin \theta + \kappa \right) \right] \, d\theta
\]
\[
\approx \int_0^{\pi R} \sin \theta \, d\theta = \pi R \quad \text{for odd } R
\]

\[
\text{Lift Force} = \frac{R}{\gamma} \int_0^{\pi R} 4U \kappa \sin^2 \theta \, d\theta
\]
\[
= \frac{R}{\gamma} \cdot 4U \kappa \int_0^{\pi R} \sin \theta \, d\theta = \frac{\pi R}{\gamma} \cdot 4U \kappa
\]
\[
= \pi R^2 U \kappa = \rho U (2 \pi R \kappa) \quad (8)
\]