1. The manometer reading is 150 mm when the tank is empty (water surface at \(A \)). Calculate the manometer reading when the tank is filled with water.

2. In the dry adiabatic model of the atmosphere, in addition to the state equation for a perfect gas, air is also assumed to obey the equation:

\[
p / \rho^n = \text{constant}
\]

where \(n = 1.4 \). If the conditions at sea level are standard (101.3 kPa, 15°C), determine the pressure and temperature at an altitude of 4000 m above sea level.

3. Calculate the \(h \) at which this gate will open.

4. A solid cylinder 1.0 m in diameter is used as an automated gate valve, as shown in the arrangement below. It is designed to open by pivoting about the hinge \(A \) when the water level \(H \) exceeds 4.5 m. Determine the required mass per unit length of the cylinder.

Answer: 2197 kg/m
Referring to the figure shown.

Let $CE = 150\text{mm}$ be the manometer reading when the tank is empty (water surface at A).

Let KF be the new reading when tank is full.

Then due to conservation of mass: $EF = BG$

or $KF = 0.150\text{m} + 2x$

Now $p_B = p_C$; $p_B = p_A + \gamma \cdot h = 0\text{ (gauge)} + 1000 \times 9.8 \times h$

$= p_C = p_E + \gamma_{Hg} (0.15) = 0\text{ (gauge)} + 1.36 \times 1000 \times 9.8 \times (0.15) = 20\text{ m}$

\[h = \frac{20000}{1000 \times 9.8} = 2.04\text{ m} \]

New with tank full: $p_A = p_C$ (same level, same fluid)

\[p_A = p_d + \gamma_{H_2O} (h + 3 + x) \quad ; \quad p_d = 0\text{ (gauge)} \]

\[p_C = p_F + \gamma_{Hg} (0.15 + 2x) \quad ; \quad p_F = 0\text{ (gauge)} \]

\[0 + 1000 \times 9.8 (2.04 + 3 + x) = 0 + 13.6 \times 1000 \times 9.8 (0.15 + 2x) \]

\[x = 0.118\text{ m} \]

\[\therefore \text{New reading} = KF = 0.150 + (0.118)^2 = 0.386\text{ m} \]
\[
\frac{dp}{dz} = -pg
\]

\[
dp/p = -gdz
\]

New \[P/p^n = \text{constant} \ C \Rightarrow p = \left(\frac{P}{C}\right)^{\frac{1}{n}} \]

\[
c = \left(\frac{P}{p^n}\right)_\text{sea level}
\]

At sea level: \[\frac{P}{p} = RT \Rightarrow p = \frac{P}{RT} \; ; \; R = 286.8 \; \text{Kg/m}^3 \text{ for air} \]

\[
\Rightarrow p = \frac{101300}{(286.8 \times (273+15))}
\]

\[
= 1.226 \; \text{Kg/m}^3
\]

\[
c = \frac{101300}{1.226} = 76660
\]

\[
p = \left(\frac{P}{76660}\right)^{\frac{1}{1.4}} = P/3069
\]

\[
= 0.0003258 \; P^{0.7143}
\]

\[
\frac{dp}{dz} = 9.8 \; \text{d}z
\]

or

\[
\frac{dp}{P^{0.7143}} = \frac{313.2}{d}z
\]

\[
313.2 \left[\frac{p}{P^{0.7143}} \right]^{3} = -\int_{0}^{\infty} dp/dz \; dz
\]

\[
313.2 \left[\frac{p}{P^{0.7143}} \right]^{3} = \left[\frac{p}{P^{0.7143}} \right]_{0}^{\infty}
\]

\[
313.2 \left[\frac{0.2857}{P^{0.7143}} \right] = -4000 + 0
\]

\[
0.2857 = \left[-4000 \times 0.2857/313.2 + 101300 \right] = 0.2857
\]

\[
P_{4000} = \left[-4000 \times 0.2857/313.2 + 101300 \right] = 0.2857
\]

\[
\therefore P_{4000} = 60.24 \; \text{Pa} = 60.24 \; \text{KPa}
\]
But \[P_{@4000\text{m}} = \left(\frac{P_{@4000\text{m}}}{C} \right)^{\frac{1}{1.4}} \]

\[= \left(\frac{60840}{76160} \right)^{\frac{1}{1.4}} = 0.8518 \frac{\text{kg}}{\text{m}^3} \]

\[T_{@4000\text{m}} = \frac{60840}{(0.8518 \times 2.868)} = 24.9^\circ \text{K} \]

\[T = 24.9^\circ \text{K} = -24^\circ \text{C} \text{ (\star)} \]

\[T = T_0 - Bz \quad \text{where} \quad B = 0.0098 \frac{\text{K}}{\text{m}} \text{ (lapse rate)} \]

\[T = 15^\circ \text{C} - 0.0098 \times 4000 = -24.2^\circ \text{C} \]

\[\text{At} \]

\[\text{\star} \text{ Alternatively, in a dry adiabatic model,} \]

\[\text{\star} \text{\star} \text{\star} \text{\star} \text{\star} \text{\star} \]
Let \(l \) be the length (into the page) of the concrete gate.

Then the forces acting on the gate are the horizontal force \(F_H \) acting on the plane area \(AB \) through \(P \), the vertical force \(F_V \) on plane area \(AD \), and the gate's own weight \(W \) acting through its centre of gravity \(G \), as shown.

Now \(F_H = (\rho g l_c)(h \times l) = (\text{density} \cdot g \cdot \frac{l_c}{2})(h \cdot l) \).

Location of \(F_H \): \(CP = \frac{l_c}{2} = \frac{l_a h^3/12}{h} = \frac{l_a h^2}{12} \).

Distance \(OP = OB + BC + CP = (1.2 - l) + \frac{h}{2} + \frac{h}{2} = 1.2 - \frac{h}{3} \) (i.e., \(AP = \frac{h}{3} \)).

\(F_V = (\text{Pressure at } A) \times (\text{Area of } AD) = (\text{water depth})(0.9 \times l) \).

This force acts through centre of pressure \(F_V \) of \(AD \), which coincides with its centroid.

Hence, \(AK = 0.9/2 = 0.45 \text{ m} \).

When the gate starts to open,

Moment (about hinge \(D \)) due to \(W \) = Moments due to \(F_H \) & \(F_V \).
\[W \times \frac{2}{3} \times (0.9) = F_x \cdot \overline{xy} + F_y \cdot \overline{AC} \]

\[W = \frac{1}{2} \times (1.2 \times 0.9 \times l) \times 24000 = 12960 \text{ N} \]

\[12960 \times \frac{2}{3} \times (0.9) l = \left[1000 \cdot 9.8 \times \frac{l^2}{2} \cdot l \right] (1.2 - \frac{h}{3}) \]

\[+ (1000 \cdot 9.8 \times h \times 0.9 \times l) (0.45) \]

Cancelling \(l \) from both sides:

\[12960 \times 0.3 = 4900 \cdot h^2 (1.2 - \frac{h}{3}) + 8820 \cdot h (0.45) \]

Solving for \(h \) gives: \(h = 0.57 \text{ m} \) \((\theta) \)

Note: the other two solutions (\(h = -1.03 \text{ m} \) and \(h = 4.05 \text{ m} \)) are rejected on physical grounds: \(h = -1.03 \text{ m} \) corresponds to the water level completely below the gate; whereas \(h = 4.05 \text{ m} \) requires an extension of the side \(AO \) of the gate - this without changing its weight!