Logic Families/Objectives

- Digital Logic Voltage and Current Parameters
 - Fan-out, Noise Margin, Propagation Delay
- TTL Logic Family
- TTL Logic Family Evolution
- ECL
- CMOS Logic Families and Evolution
- Logic Family Overview
Logic Families/Level of Integration

- SSI <12 gates/chip
- MSI 12..99 gates/chip
- LSI ..1000 gates/chip
- VLSI ...10k gates/chip
- ULSI ...100k gates/chip
- GSI ...1Meg gates/chip

Level of integration ever increasing, because of:
- cost
- speed
- size
- power
- reliability

Limits of integration:
- packaging
- power dissipation
- inductive and capacitive components
- flexibility
- critical quantity

Note: Ratio gate count/transistor count is roughly 1/10
Logic Families/Level of Integration

– Remember: Gordon Moore, 1975. Predictions:
 • Mosfet device dimensions scale down by a factor of 2 every 3 years
 • #transistors/chip double every 1-2 years.

Source: G. Sery, Intel
Logic Families/Static VI Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voh(min)</td>
<td>High-Level Output Voltage. The minimum voltage level at a logic circuit output in the logical 1 state under defined load conditions.</td>
</tr>
<tr>
<td>Vol(max)</td>
<td>Low-Level Output Voltage. The maximum voltage level at a logic circuit output in the logical 0 state under defined load conditions.</td>
</tr>
</tbody>
</table>
Logic Families/Static VI Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vih(min)</td>
<td>High-Level Input Voltage. The minimum voltage level required for</td>
</tr>
<tr>
<td></td>
<td>a logical 1 at an input. Any voltage below this level may not be</td>
</tr>
<tr>
<td></td>
<td>recognized as a logical 1 by the logic circuit.</td>
</tr>
<tr>
<td>Vil(max)</td>
<td>Low-Level Input Voltage. The maximum voltage level required for</td>
</tr>
<tr>
<td></td>
<td>a logical 0 at an input. Any voltage above this level may not be</td>
</tr>
<tr>
<td></td>
<td>recognized as a logical 0 by the logic circuit.</td>
</tr>
</tbody>
</table>
Logic Families/Static VI Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ioh</td>
<td>High-Level Output Current. Current flowing into an output in the logical 1 state under specified load conditions.</td>
</tr>
<tr>
<td>Iol</td>
<td>Low-Level Output Current. Current flowing into an output in the logical 0 state under specified load conditions.</td>
</tr>
</tbody>
</table>
Parameter | Comment
--- | ---
I\text{ih} | **High-Level Input Current.** Current flowing into an input when a specified high-level voltage is applied to that input.
I\text{il} | **Low-Level Input Current.** Current flowing into an input when a specified low-level voltage is applied to that input.
Logic Families/Fan-Out

- Fan-out: The maximum number of logic inputs that an output can drive reliably.

Beware:
Modern mixed-technology digital systems often employ logic from different logic families. In this case Fan-out is meaningless, unless the operating condition is specified exactly. Unless otherwise specified, fan-out is always assumed to refer to load devices of the same family as the driving output.
Logic Families/Noise (Voltage) Margin

High state noise margin:
\[V_{nh} = V_{oh}(\text{min}) - V_{ih}(\text{min}) \]

Low state noise margin:
\[V_{nl} = V_{il}(\text{max}) - V_{ol}(\text{max}) \]

Noise margin:
\[V_n = \min(V_{nh}, V_{nl}) \]

Noise margin required for reliable operation of digital systems in the presence of noise, crosscoupling, and ground-bounce.

Sometimes quoted: Percentage noise margin… bears little practical value.
Logic Families/Propagation Delay

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>tphl</td>
<td>Input-to-output propagation delay time for output going from high to low.</td>
</tr>
<tr>
<td>tplh</td>
<td>Input-to-output propagation delay time for output going from low to high.</td>
</tr>
</tbody>
</table>

(Vague) comparison between logic families: (e.g. for 74HC00: 25ns*100µW=2.5pJ)

Gate Speed Power Product:

\[t_{p_{avg}} \cdot P_{diss_{avg}} \]
Logic Families/TTL Logic

Standard TTL Logic:
- Bipolar Transistor-Transistor Logic
- Introduced in 1964 (Texas Instruments)
- Tremendous influence on the characteristics of all logic devices today
- Standard TTL shaped digital technology
- Standard TTL Logic (e.g. 7400) practically obsolete (i.e. replaced by more advanced logic families, e.g. 74ALS00)
- A large variety of logic functions available
- Single- or multi-emitter input transistor Q1 (up to eight emitters)
- Totem-pole output arrangement (Q3, Q4)
BJT (Bipolar Junction Transistor) storage time reduction by using a BC Schottky diode. Schottky diode has a $V_{fw}=0.25\,\text{V}$. When BC junction becomes forward biased Schottky diode will bypass base current.
Logic Families/TTL/Logic Evolution

74 Series
Bipolar. Saturated BJTs. Practically obsolete. Don’t use in new designs!

74S Series

74LS Series
Bipolar. Lower-power slower-speed version of the 74S Series.

74AS Series
Innovations in IC design and fabrication. Improvement in speed and power dissipation. Relatively popular. Fastest TTL available.

74ALS Series
Innovations in IC design and fabrication. Improvement in speed and power dissipation. Popular.

74F Series
Innovations in IC design and fabrication. Popular.
Logic Families/ECL

Advantages of ECL
• fastest logic family available

Disadvantages of ECL
• negative supply (awkward)
• high static power dissipation
• limited choice of manufacturers and devices
• low noise margin

TTL
• BJTs operating in saturated mode
• Limited switching speed (storage time)

ECL (Emitter-Coupled Logic)
• BJTs operating in unsaturated mode (i.e. emitter-follower mode)
• Principle: Current switching (ECL is also sometimes called Current-Mode-Logic CML)
Logic Families/CMOS

MOS Logic:
MOS: Metal-Oxide-Semiconductor (Metal-Oxide-Silicon)

MOS Logic Categories:
• NMOS (obsolete)
• PMOS (obsolete)
• CMOS: complementary MOS

Advantages of MOS
• inexpensive and simple to fabricate
• high speed
• low static power consumption
• scaling of mosfets: higher integration possible
• rail-to-rail outputs

Disadvantages of MOS
• susceptibility to electro-static damage, ESD
• susceptibility to latch-up

Because of their advantages CMOS devices have become dominant in the IC market.

First CMOS logic family CD4000 introduced in 1968.
CMOS Gate Characteristics:
• No resistive elements (resistors elements require large chip areas in bipolar ICs)
• Extremely low static power consumption (Roff > 10^{10}Ω)
• Extremely low static input currents
• Cross-conduction and charge/discharge of internal capacitances lead to dynamic power dissipation
• Output Y swings rail-to-rail (low Ron)
• Supply voltage can be reduced to 1V and below

DO NOT leave CMOS inputs floating!
Unused CMOS inputs must be tied to a fixed voltage level (or to another input).
Logic Families/CMOS/Logic Evolution

CMOS Logic Trend:
Reduction of dynamic losses (cross-conduction, capacitive charge/discharge cycles) by decreasing supply voltages

(12V → 5V → 3.3V → 2.5V → 1.8V → 1.5V ...).

Reduction of IC power dissipation is the key to:
- lower cost (packaging)
- higher integration
- improved reliability

4000 Series

74C Series

74HC/HCT Series
CMOS. Drastic increase in speed. Higher output drive capability. HCT input voltage levels compatible with TTL.

74AC/ACT Series
CMOS. Functionally compatible, but not pin-compatible to TTL. Improved noise immunity and speed. ACT inputs are TTL compatible.

74AHC/AHCT Series
CMOS. Improved speed, lower power, lower drive capability.

BiCMOS Logic
CMOS/Bipolar. Combine the best features of CMOS and bipolar. Low power high speed. Bus interfacing applications (74BCT, 74ABT)

74LVC/ALVC/LV/AVC
CMOS. Reduced supply voltage. LVC: 5V/3.3V translation ALVC: Fast 3.3V only AVC: Optimised for 2.5V, down to 1.2V
Logic Families/Overview

<table>
<thead>
<tr>
<th>Logic Family</th>
<th>Prop. Delay</th>
<th>Rise/Fall Time</th>
<th>$V_{ih\text{min}}$</th>
<th>$V_{il\text{max}}$</th>
<th>$V_{oh\text{min}}$</th>
<th>$V_{ol\text{max}}$</th>
<th>Noise Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>22ns</td>
<td></td>
<td>2.0V</td>
<td>0.8V</td>
<td>2.4V</td>
<td>0.4V</td>
<td>0.4V</td>
</tr>
<tr>
<td>74LS</td>
<td>15ns</td>
<td></td>
<td>2.0V</td>
<td>0.8V</td>
<td>2.7V</td>
<td>0.5V</td>
<td>0.3V</td>
</tr>
<tr>
<td>74F</td>
<td>5ns</td>
<td>2.3ns</td>
<td>2.0V</td>
<td>0.8V</td>
<td>2.7V</td>
<td>0.5V</td>
<td>0.3V</td>
</tr>
<tr>
<td>74AS</td>
<td>4.5ns</td>
<td>1.5ns</td>
<td>2.0V</td>
<td>0.8V</td>
<td>2.7V</td>
<td>0.5V</td>
<td>0.3V</td>
</tr>
<tr>
<td>74ALS</td>
<td>11ns</td>
<td>2.3ns</td>
<td>2.0V</td>
<td>0.8V</td>
<td>2.5V</td>
<td>0.5V</td>
<td>0.3V</td>
</tr>
<tr>
<td>ECL</td>
<td>1.45ns</td>
<td>0.35ns</td>
<td>-1.165V</td>
<td>-1.475V</td>
<td>-1.025V</td>
<td>-1.610V</td>
<td>0.135V</td>
</tr>
<tr>
<td>4000</td>
<td>250ns</td>
<td>90ns</td>
<td>3.5V</td>
<td>1.5V</td>
<td>4.95V</td>
<td>0.05V</td>
<td>1.45V</td>
</tr>
<tr>
<td>74C</td>
<td>90ns</td>
<td></td>
<td>3.5V</td>
<td>1.5V</td>
<td>4.5V</td>
<td>0.5V</td>
<td>1V</td>
</tr>
<tr>
<td>74HC</td>
<td>18ns</td>
<td>3.6ns</td>
<td>3.5V</td>
<td>1.0V</td>
<td>4.9V</td>
<td>0.1V</td>
<td>0.9V</td>
</tr>
<tr>
<td>74HCT</td>
<td>23ns</td>
<td>3.9ns</td>
<td>2.0V</td>
<td>0.8V</td>
<td>4.9V</td>
<td>0.1V</td>
<td>0.7V</td>
</tr>
<tr>
<td>74AC</td>
<td>9ns</td>
<td>1.5ns</td>
<td>3.5V</td>
<td>1.5V</td>
<td>4.9V</td>
<td>0.1V</td>
<td>1.4V</td>
</tr>
<tr>
<td>74ACT</td>
<td>9ns</td>
<td>1.5ns</td>
<td>2.0V</td>
<td>0.8V</td>
<td>4.9V</td>
<td>0.1V</td>
<td>0.7V</td>
</tr>
<tr>
<td>74AHC</td>
<td>3.7ns</td>
<td></td>
<td>3.85V</td>
<td>1.65V</td>
<td>4.4V</td>
<td>0.44V</td>
<td>0.55V</td>
</tr>
</tbody>
</table>

(Typical values for rough comparison only. Refer to datasheet. Values valid for Vcc=5V)

Care is needed when driving inputs of one logic family by outputs of a different family!
Watch voltage levels and fan-out!
TI remains committed to be the last supplier in the older families.
Family Performance Positioning

- **ABT Advanced BiCMOS Technology**
- **AC/T Advanced CMOS**
- **AHC/T Advanced High Speed CMOS**
- **ALVC Advanced Low Voltage CMOS**
- **ALVT Advanced Low Voltage BiCMOS**
- **AUC Advanced Ultra Low Voltage CMOS**
- **AUP Advanced Ultra Low Power CMOS**
- **AVC Advanced Very Low Voltage CMOS**
- **BCT BiCMOS Technology**
- **FCT Fast CMOS Technology**
- **GTLP Gunning Transceiver Logic Plus**
- **HC/T High Speed CMOS**
- **LV Low Voltage HCMOS**
- **LVC Low Voltage CMOS**
- **LVT Low Voltage BiCMOS Technology**

Optimized V_{cc}

- 5 V
- 3.3 V
- 2.5 V
- 1.8 V

I_{OL} Drive (mA)

Speed - max t_{pd} (ns)
CMOS Voltage vs. Speed

Comparison of 16245 functions with 500 ohm/30pF load. (AUC not yet tested)
IC Basics
Comparison of Switching Standards

<table>
<thead>
<tr>
<th>VCC</th>
<th>Voh</th>
<th>Vij</th>
<th>Vol</th>
<th>VIL</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>2.4</td>
<td>1.5</td>
<td>0.4</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>5V</td>
<td>4.44</td>
<td>3.5</td>
<td>0.4</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>5V</td>
<td>2.4</td>
<td>1.5</td>
<td>0.4</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>5V</td>
<td>2.4</td>
<td>1.5</td>
<td>0.4</td>
<td>0.8</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Is Voh higher than Vij?
Is Vol less than VIL?

<table>
<thead>
<tr>
<th>D</th>
<th>R</th>
<th>5TTL</th>
<th>5CMOS</th>
<th>3LVTTL</th>
<th>2.5CMOS</th>
<th>1.8CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5TTL</td>
<td>Yes</td>
<td>No</td>
<td>Yes *</td>
<td>Yes *</td>
<td>Yes *</td>
<td>Yes *</td>
</tr>
<tr>
<td>5 CMOS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Yes*</td>
<td>Yes*</td>
</tr>
<tr>
<td>3 LVTTL</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
<td>Yes*</td>
</tr>
<tr>
<td>2.5 CMOS</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
</tr>
<tr>
<td>1.8 CMOS</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Requires Vih Tolerance

Is Vol less than VIL?
Mixed-Voltage Interfacing

Open-Drain Outputs 05/06/07 Functions

Functions Available
05 - S, LS, ALS, AC, HC, AHC, LV, LVC
06 - TTL, LS, LV, LVC, LVC1G/3G, AUC1G
07 - TTL, LS, LV, LVC, LVC1G/3G, AUC1G

Required Input level depends on V_{CC1}

Output level depends on V_{CC2}

Also Possible
Wired-Function Technique

Phantom links on output side can reduce component count.

NOTE: Over voltage tolerance is required to support UP translation.

<table>
<thead>
<tr>
<th>Supply Voltage Vcc</th>
<th>LV05A/06A/07A</th>
<th>LVC06A/07A</th>
<th>LVC1G07/2G07/3G07</th>
<th>Pullup resistor may be connected to</th>
<th>Level conversion range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 V</td>
<td>NA</td>
<td>1.8 V Levels 1 - 3.5 ns</td>
<td>1.8 V Levels 2.4 - 8.3 ns</td>
<td>1.8V, 2.5V, 3.3V and 5V</td>
<td>1.8 V ↔ 1.8V - 5.5V</td>
</tr>
<tr>
<td>2.5 V</td>
<td>2.5 V Levels 6.6 - 10.4 ns</td>
<td>2.5 V Levels 1 - 2.8 ns</td>
<td>2.5 V Levels 1 - 5.5 ns</td>
<td>1.8V, 2.5V, 3.3V and 5V</td>
<td>2.5 V ↔ 1.8V - 5.5V</td>
</tr>
<tr>
<td>3.3 V</td>
<td>3.3 V Levels 5 - 7.1 ns</td>
<td>3.3 V Levels 1 - 2.9 ns</td>
<td>3.3 V Levels 1.5 - 4.2 ns</td>
<td>1.8V, 2.5V, 3.3V and 5V</td>
<td>3.3 V ↔ 1.8V - 5.5V</td>
</tr>
<tr>
<td>5 V</td>
<td>5 V Levels 3.4 - 5.5 ns</td>
<td>5 V Levels 1 - 2.6 ns</td>
<td>5 V Levels 1 - 3.5 ns</td>
<td>1.8V, 2.5V, 3.3V and 5V</td>
<td>5 V ↔ 1.8V - 5.5V</td>
</tr>
</tbody>
</table>
IC Packaging/Intro

- ICs are at the core of a modern digital system
- Many systems fit entirely on a single IC (SOC)
 - a single (15-mm)2 chip can hold several million gates (1997)
 - a simple 32-bit CPU can be realised in an area of 1mm2
- Biggest limitation of a modern digital IC: Large reduction in signal count between on-chip wires and package pins. Typical IC
 - 10^4 wiring tracks on each of four metal layers
 - 10^3 signals can leave the chip (for cheaper packages: 40..200)
 - Chips are often “pad-limited”. Peripheral-bonded chips. Chip area increases as the square of the number of pads
IC Packaging/Intro

• Most ICs are bonded to small IC packages
 Although it is possible to attach chips directly to boards. Method used extensively in low-cost consumer electronics. Placing chips in packages enables independent testing of packaged parts, and eases requirements on board pitch and P&P (pick-and-place) equipment.

• IC Packages
 – inexpensive plastic packages: <200 pins
 – packages with >1000 pins available
 (e.g. Xilinx FF1704: 1704-ball flip-chip BGA)

• IC Packaging Materials
 – Plastic, ceramic, laminates (fiberglass, epoxy resin), metal
IC Packaging/Categories

- **IC package categories:**
 - **PTH (pin-through-hole)**
 Pins are inserted into through-holes in the circuit board and soldered in place from the opposite side of the board
 - Sockets available
 - Manual P&P possible
 - **SMT (surface-mount-technology)**
 SMT packages have leads that are soldered directly to corresponding exposed metal lands on the surface of the circuit board
 - Elimination of holes
 - Ease of manufacturing (high-speed P&P)
 - Components on both sides of the PCB
 - Smaller dimensions
 - Improved package parasitic components
 - Increased circuit-board wiring density

SMT packages offer many benefits and are generally preferred.
IC Packaging/Materials

• IC packaging material: Plastic
 – die-bonding and wire-bonding the chip to a metal lead frame
 – encapsulation in injection-molded plastic
 – inexpensive but high thermal resistance
 – **Warning**: Plastic molds are hygroscopic
 » Absorb moisture
 Storage in low-humidity environment. Observation of factory floor-life
 » Stored moisture can vapourise during rapid heating
 can lead to hydrostatic pressure during reflow process. Consequences can be: Delamination within the package, and package cracking. Early device failure.
IC Packaging/Materials

- IC packaging materials: Ceramic
 - consists of several layers of conductors separated by layers of ceramic (Al₂O₃ “Alumina”)
 - chip placed in a cavity and bonded to the conductors
 Note: no lead-frame
 - metal lid soldered on to the package
 - sealed against the environment
 - ground layers and direct bypass capacitors possible within a ceramic package
 - high permittivity of alumina (εᵣ=10)
 Note: High permittivity leads to higher propagation delay!
 - expensive
IC Packaging/Popular IC Packages

Plastic Dual-In-Line (PDIP)
here: PDIP14

SC70
here: SC70-5

Small Outline Integrated Circuit (SOIC)
here: SO14

Plastic Lead Chip Carrier (PLCC)
here: PLCC28

Thin Shrink Small Outline (TSSOP)
here: TSSOP14

Thin Quad Flat Package (TQFP)
here: TQFP32
IC Packaging/Popular IC Packages

Small Outline Integrated Circuit (SOIC)
• Shown: SO14, but available from SO8..SO28
• Gull-wing leads
• Popular, cost effective, and widely available IC package for low-pin-count ICs
• Dimensions: 8.6mm x 3.9mm x 1.75mm
• Pin-to-pin: 1.27mm (50mil)
IC Packaging/Popular IC Packages

Thin Shrink Small Outline (TSSOP)

• Shown: TSSOP14, but available up to TSSOP64
• Popular, cost effective, and widely available IC package for low-profile applications
• Dimensions: 5.0mm x 4.4mm x 1.2mm
• Pin-to-pin: 0.65mm (25mil)
IC Packaging/Popular IC Packages

Ball Grid Arrays (BGA)
- Shown: BGA54
- Available pin count >1700
- Advanced IC package for high-density low-profile applications
- Chip-scale package (CSP)
- Dimensions: 8.0mm x 5.5mm x 1.4mm
- Pin-to-pin: 0.8mm
- Low lead inductance

Challenges:
- Integrity of solder joints
- Solder joint inspection (X-ray)
- Availability of 2nd source
- Routing

Altera Ultra-Fine-Line BGA
- Pin-Count: 169
- Dimensions 11mm x 11mm
- Profile: 1.2mm
IC Packaging/BGA Physical Construction

Physical construction of a BGA
• Shown: Type-II BGA (cavity-down design)
• Interconnect: multi-layer laminated construction
• Die bonded onto a metal heat slug
• Solder balls make connection to a PC board
• 50µm bond wires
• Copper conductor thickness 20µm
• Layer separation 150µm
IC Packaging/Electronic Assembly (1981)

IBM PC 1981
- IC packaging: DIL only!
- Processor: 8088
- Memory: 256kB
Low-density electronic assembly with various IC packages

- SO
- TSSOP
- QFP
- BGA