Cement Manufacturing Process

- What is Cement?
- History
- Overview of the Cement Manufacturing Process
- Brief Overview of Kiln Operations
- Why Burn Wastes?
Portland Cement

- A hydraulic cement made by finely pulverizing the clinker produced by calcining to incipient fusion a mixture of argillaceous and calcareous materials
- Portland cement is the fine gray powder that is the active ingredient in concrete
Concrete

- One Shovel Powder......................Portland Cement
- Two Shovels Sand.....................Mineral Aggregate
- Three Shovels Rock....................Mineral Aggregate
- Add water & mix
- Binds & sets to a solid mass
Concrete components: Cement is the key ingredient of concrete, but makes up just 11% of the mix.

- 11% Portland Cement
- 16% Water
- 6% Air
- 26% Sand (Fine Aggregate)
- 41% Gravel or Crushed Stone (coarse Aggregate)
Concrete

- Mixture of ingredients into a paste & triggers a chemical reaction - hydration
- Reaction forms a gel which coats & fills spaces between the stone/sand;
- Hardens into a solid mass that gets stronger & stronger
Concrete

• The world’s most widely used building material
• Global production is 5 billion cubic yards per year (using approximately 1.25 billion tons of cement)
Concrete owes its strength and durability to **one** essential ingredient - Portland Cement.
Portland Cement

- Limestone + Shale/Clay + Heat = Clinker + CKD + Exit Gas
- Material Temperatures Exceed 2700 °F
- Pulverized Clinker + Gypsum = Portland Cement
- Cement is powder so fine that one pound contains 150 billion grains
Portland Cement (cont’d)

• Basic Chemical Components of Portland Cement:
 – Calcium (Ca)
 – Silicon (Si)
 – Aluminum (Al)
 – Iron (Fe)

• Typical Raw Materials:
 – Limestone (CaCO$_3$)
 – Sand (SiO$_2$)
 – Shale, Clay (SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$)
 – Iron Ore/Mill Scale (Fe$_2$O$_3$)
Portland Cement (cont’d)

- **Calcareous Component** (providing Lime - CaO)
 - limestone
 - marly limestone
 - chalk
 - coral limestone
 - marble
 - lime-sand
 - shell deposits
 - lime sludge

- **Argillaceous Component** (SiO₂, Al₂O₃, and Fe₂O₃)
 - clay
 - shale
 - calcareous marl
 - marl
 - marly clay
 - tuff, ash
 - phyllite, slate
 - glass
Portland Cement (cont’d)

• Clinker Chemistry
 – Tricalcium silicate (3CaO.SiO₂), (50-70%)
 – Dicalcium silicate (2CaO.SiO₂), (15-30%)
 – Tricalcium aluminate (3CaO.Al₂O₃), (5-10%)
 – Tetracalcium aluminoferrite
 (4CaO.Al₂O₃.Fe₂O₃), (5-15%)
Portland Cement (cont’d)

Tricalcium Silicate

\[
\text{CaO} \quad \text{SiO}_2 \quad \text{CaO} \quad \text{CaO}
\]

Tricalcium Aluminate

\[
\text{CaO} \quad \text{Al}_2\text{O}_3 \quad \text{CaO} \quad \text{CaO}
\]
Portland Cement (cont’d)

Phase Diagram

System CaO–Al₂O₃–SiO₂
History of Portland Cement

• First cements produced by early Greeks and Romans from volcanic ash mixed with slaked lime

• This art was lost during the Middle Ages

• Portland cement developed in England by bricklayer Joseph Aspdin in early 1800’s

• Called “Portland” because concrete made with it resembled natural stone from the Isle of Portland
• First rotary kiln designed to produce Portland cement patented in 1885 by Frederick Ransome
• First economical U.S. kilns developed by Atlas Cement Company in 1895
• Thomas A. Edison first developed long kilns (150 feet compared to 60 to 80 feet)
Energy/Capital Intensive Industry

- Requires 80 separate & continuous operations
- 1990 - 6th in the nation for energy usage
- 18,700,000 tons of coal burned in the U.S. (value of $748,000,000)
- 1,398,400,000 kW of power used (value of $700,000,000)
- A one million ton plant requires approximately $175 million in capital
Types of Cement Processes

- Wet Process
- Dry Process - 74% of cement produced
- Preheater/Precalciner Process
Evolution of the Cement Process

- Wet process easiest to control chemistry & better for moist raw materials
- Wet process high fuel requirements - fuel needed to evaporate 30+% slurry water
- Dry process kilns less fuel requirements
- Preheater/precaltiners further enhance fuel efficiency & allow for high production rates
The Wet Cement Kiln

- The kiln is a continuous stream process vessel in which feed and fuel are held in dynamic balance.
- 5 distinct process functions are performed in the kiln:
 - Dry
 - Preheat
 - Calcine
 - Sinter
 - Cool
• There are still five jobs to be done
 • Drying
 • Preheating
 • Calcining
 • Sintering
 • Cooling

Dry Process Preheater/Precalciner System

60% Fuel Split
40%
Steps in the Manufacture of Portland Cement

Rock mined from a quarry is crushed in either one or two stages, then stored with other raw materials to await further processing.

To Proportioning and Grinding
Typically shale provides the argillaceous components:
- Silica (SiO$_2$, Aluminum (Al$_2$O$_3$) & Iron (Fe$_2$O$_3$))

Limestone provides the calcareous component:
- Calcium Carbonate (CaCO$_3$)

Raw materials may vary in both composition and morphology.
Steps in the Manufacture of Portland Cement

After analysis, the raw materials are proportioned, ground to fine powder, and blended. Some cement plants add water to the material during grinding, then blend and store it as a slurry.
Kiln Feed Preparation

- Proportioning of feed stock.
- Size reduction to < 125µ.
- Control of moisture.
- Blending to reduce standard deviation.
- Uniform delivery rate of feed to the Kiln.
Figure 4: Vertical Roller Mill

- Proportioning
- Drying
- Grinding

Product

Hot Gas from Pre-heater

Kiln Feed

Water Spray

Recirculation

Mill Fan

Fresh Feed

Hot Gas Generator

Rejects
Steps in the Manufacture of Portland Cement

WHAT IS A KILN?
A cement kiln is a huge inclined rotating furnace. As the raw materials of limestone, clay, and shale tumble toward the 3,400° F. flame, a chemical reaction transforms them into clinker which is ground together with gypsum to form portland cement.
Steps in the Manufacture of Portland Cement

Once cooled, the clinker is ground with a small amount of gypsum. It's now portland cement-ready to be bagged or shipped in bulk.
Clinker, gypsum, and optional additives are weighed to proper proportions and ground in the cement mills.
Additives may include: Fly-ash, Limestone....
Cement Kiln
the Largest Moving Equipment in any Manufacturing Operation

And the Hottest
Cement Kilns

- High temperature
- Long residence time
- Natural alkaline environment
- CKD is only by-product of the process
- Thermal stability
Kiln Process Control

- Critical Parameters: Fuel, Feed, Kiln Speed, Gas Flow
- Kiln Temperatures - Burning Zone
- Kiln Stability
- Chemistry
- Instrumentation
The Wet Cement Kiln

Critical Parameters: Fuel, Feed, Kiln Speed, Gas Flow
Kiln Temperatures
Wet Kiln Process Material and Gas Temperatures
Dry Process Preheater/Precalciner System

Preheater Precalciner Kiln

60% Fuel Split
40%
Dry Kiln Process Material and Gas Temperatures
Kiln Fuels

Coal & Pet Coke

A typical wet kiln burns about 400# of fuel to make a ton of clinker (5.0 mmBtu/ton of clinker)

Fuels can be any combustible hydrocarbon such as:

- coal, coke, natural gas, used motor oil, wood, tires, cellulose others.
A cement kiln is a proven technology for recycling by beneficial REUSE of solid and hazardous wastes.

The benefits are:
- energy recovery
- material recovery
- economics
- environmental preservation
Federal & State Established Priorities for Industrial Waste Disposal

- Reduction at the source
- Recycling
- Energy recovery
- Incineration
- Stabilization
- Landfill
Benefits of a Recycling Program

- Allows for reuse of waste materials
- Conserves virgin fuels & raw materials
- Regulated stringently for environmental protection
Waste Recycling Process

- Waste fuels are destroyed, releasing heat, water and carbon dioxide
- Solid materials are physically and chemically combined in the clinker product
Cement Kilns - Excellent Environment for Destroying & Recycling Wastes

A Cement Kiln Provides:

- 3,000°F + Flame
- Long retention times of gasses and materials
- Stability of a large dependable industrial process
- Many inherent safeguards
A Cement Kiln Is A Proven Technology For Beneficial REUSE of Otherwise Waste Materials

The Benefits are:

• Energy Recovery
• Material Recovery
Recycling Programs

Energy Replacement for Coal/Coke
• Liquid fuels
• Solid fuels

Material Replacement for Raw Materials (Limestone, Shale and Sand)
• Solids/sludge slightly contaminated with metals
• Solids/sludge slightly contaminated with organics
From Quarry...to Kiln...to Construction Site

Thank You!